Applications of Domino Transformations in Organic Synthesis, Volume 2
Applications of Domino Transformations in Organic Synthesis, Volume 2
The rapid pace of evolution in domino, or cascade-based transformations has revolutionized the practice of chemical synthesis for the creation of natural products, designed molecules, and pharmaceuticals.
'Science of Synthesis: Applications of Domino Transformations in Organic Synthesis' explores the topic thoroughly and systematically, serving as the basis for practical applications and future research. The 2-volume set presents the cutting-edge in terms of design, strategy, and experimental procedures, leading to multiple events being accomplished within a single reaction vessel. The content is organized by the core type of reaction used to initiate the event, be it a pericyclic reaction, a metal-mediated transformation, radical chemistry, or an acid-induced cascade among many others.
Volume 2 covers pericyclic reactions (Diels-Alder, sigmatropic shifts, ene reactions), dearomatizations, and additions to C-O/C-N multiple bonds.
1;Science of Synthesis Applications of Domino Transformations in Organic Synthesis 2;1 2;Title Page;7 3;Copyright;8 4;Preface;9 5;Science of Synthesis Reference Library;11 6;Volume Editor's Preface;13 7;Abstracts;15 8;Applications of Domino Transformations in Organic Synthesis 2;21 9;Table of Contents;23 10;2.1 Pericyclic Reactions;31 10.1;2.1.1 The Diels-Alder Cycloaddition Reaction in the Context of Domino Processes;31 10.1.1;2.1.1.1 Cascades Not Initiated by Diels-Alder Reaction;32 10.1.1.1;2.1.1.1.1 Cascades Generating a Diene;32 10.1.1.1.1;2.1.1.1.1.1 Ionic Generation of a Diene;32 10.1.1.1.1.1;2.1.1.1.1.1.1 Through Wessely Oxidation of Phenols;32 10.1.1.1.1.2;2.1.1.1.1.1.2 Through Ionic Cyclization;36 10.1.1.1.1.3;2.1.1.1.1.1.3 Through Deprotonation of an Alkene;37 10.1.1.1.1.4;2.1.1.1.1.1.4 Through Elimination Reactions;38 10.1.1.1.1.5;2.1.1.1.1.1.5 Through Allylation;42 10.1.1.1.2;2.1.1.1.1.2 Pericyclic Generation of a Diene;42 10.1.1.1.2.1;2.1.1.1.1.2.1 Through Electrocyclization;43 10.1.1.1.2.1.1;2.1.1.1.1.2.1.1 Through Benzocyclobutene Ring Opening;43 10.1.1.1.2.1.2;2.1.1.1.1.2.1.2 Through Electrocyclic Ring Closure;44 10.1.1.1.2.2;2.1.1.1.1.2.2 Through Cycloaddition or Retrocycloaddition;47 10.1.1.1.2.3;2.1.1.1.1.2.3 Through Sigmatropic Reactions;48 10.1.1.1.3;2.1.1.1.1.3 Photochemical Generation of a Diene;49 10.1.1.1.4;2.1.1.1.1.4 Metal-Mediated Generation of a Diene;50 10.1.1.2;2.1.1.1.2 Cascades Generating a Dienophile;52 10.1.1.2.1;2.1.1.1.2.1 Ionic Generation of a Dienophile;52 10.1.1.2.1.1;2.1.1.1.2.1.1 Through Himbert Cycloadditions;52 10.1.1.2.1.2;2.1.1.1.2.1.2 Through Benzyne Formation;53 10.1.1.2.1.3;2.1.1.1.2.1.3 Through Wessely Oxidation;54 10.1.1.2.2;2.1.1.1.2.2 Pericyclic Generation of a Dienophile;57 10.1.1.2.2.1;2.1.1.1.2.2.1 Through Cycloaddition/Retrocycloaddition;57 10.1.1.2.2.2;2.1.1.1.2.2.2 Through Sigmatropic Rearrangement;57 10.1.1.2.2.3;2.1.1.1.2.2.3 Through Electrocyclization;59 10.1.1.3;2.1.1.1.3 Proximity-Induced Diels-Alder Reactions;59 10.1.2;2.1.1.2 Diels-Alder as the Initiator of a Cascade;61 10.1.2.1;2.1.1.2.1 Pericyclic Reactions Occurring in the Wake of a Diels-Alder Reaction;61 10.1.2.1.1;2.1.1.2.1.1 Cascades Featuring Diels-Alder/Diels-Alder Processes;61 10.1.2.1.2;2.1.1.2.1.2 Cascades Featuring Diels-Alder/Retro-Diels-Alder Processes;63 10.1.2.1.3;2.1.1.2.1.3 [4 + 2] Cycloaddition with Subsequent Desaturation;66 10.1.2.2;2.1.1.2.2 Diels-Alder Reactions with Concomitant Ionic Structural Rearrangements;66 10.1.2.2.1;2.1.1.2.2.1 Pairings of Diels-Alder Reactions with Structural Fragmentations;67 10.1.2.2.2;2.1.1.2.2.2 Combining a Diels-Alder Reaction with Ionic Cyclization;70 10.1.3;2.1.1.3 Conclusions;73 10.2;2.1.2 Domino Reactions Including [2 + 2], [3 + 2], or [5 + 2] Cycloadditions;77 10.2.1;2.1.2.1 Domino [2 + 2] Cycloadditions;77 10.2.1.1;2.1.2.1.1 Cycloaddition of an Enaminone and ß-Diketone with Fragmentation;78 10.2.1.2;2.1.2.1.2 Cycloaddition of Ynolate Anions Followed by Dieckmann Condensation/Michael Reaction;78 10.2.1.3;2.1.2.1.3 Cycloaddition Cascade Involving Benzyne-Enamide Cycloaddition or a Fischer Carbene Complex;80 10.2.1.4;2.1.2.1.4 Cycloadditions with Rearrangement;81 10.2.1.4.1;2.1.2.1.4.1 Cycloaddition of an Azatriene Followed by Cope Rearrangement;81 10.2.1.4.2;2.1.2.1.4.2 Cycloaddition of a Propargylic Ether and Propargylic Thioether Followed by [3,3]-Sigmatropic Rearrangement;82 10.2.1.4.3;2.1.2.1.4.3 [3,3]-Sigmatropic Rearrangement of Propargylic Ester and Propargylic Acetate Followed by Cycloaddition;83 10.2.1.4.4;2.1.2.1.4.4 Cycloaddition of a Ketene Followed by Allylic Rearrangement;84 10.2.1.4.5;2.1.2.1.4.5 Allyl Migration in Ynamides Followed by Cycloaddition;85 10.2.1.4.6;2.1.2.1.4.6 1,3-Migration in Propargyl Benzoates Followed by Cycloaddition;86 10.2.2;2.1.2.2 Domino [3 + 2] Cycloadditions;87 10.2.2.1;2.1.2.2.1 Cycloadditions with Nitrones, Nitronates, and Nitrile Oxides;87 10.2.2.1.1;2.1.2.2.1.1 Reaction To Give a Nitrone Followed by Cycloaddi
Snyder, Scott A.
Bella, Marco
Dömling, Alexander
Boyce, Jon
ISBN | 9783132211810 |
---|---|
Artikelnummer | 9783132211810 |
Medientyp | E-Book - ePUB |
Copyrightjahr | 2016 |
Verlag | Georg Thieme Verlag KG |
Umfang | 528 Seiten |
Sprache | Englisch |
Kopierschutz | Digitales Wasserzeichen |