Functional Materials for Electrocatalytic Energy Conversion
systematically summarize the preparation methods and physicochemical properties of various materials as well as their reaction mechanism in electrocatalytic energy conversion.
Chapter 1 Introduction
Chapter 1 Introduction
Part I. Advanced Functional Materials for Electrocatalytic Energy Conversion
Chapter 2 Density Functional Theory for Electrocatalytic Energy Conversion
Chapter 3 Electrocatalytic Reaction Mechanism for Energy Conversion
Part II. Advanced Functional Materials for Electrocatalytic Hydrogen Evolution Reaction
Chapter 4 Metal-based Materials for Electrocatalytic Hydrogen Evolution Reaction
Chapter 5 Metal Compounds for Electrocatalytic Hydrogen Evolution Reaction
Chapter 6 Carbon-based Materials for Electrocatalytic Hydrogen Evolution Reaction
Chapter 7 Porous Materials for Electrocatalytic Hydrogen Evolution Reaction
Part III. Advanced Functional Materials for Electrocatalytic Oxygen Reduction Reaction
Chapter 8 Metal-based Materials for Electrocatalytic Oxygen Reduction Reaction
Chapter 9 Carbon-Based Materials for Electrocatalytic Oxygen Reduction Reaction
Chapter 10 Porous Materials for Electrocatalytic Oxygen Reduction Reaction
Part IV. Advanced Functional Materials for Electrocatalytic Oxygen Evolution Reaction
Chapter 11 Metal-based Materials for Electrocatalytic Oxygen Evolution Reaction
Chapter 12 Metallic Compounds for Electrocatalytic Oxygen Evolution Reaction
Chapter 13 Porous Materials for Electrocatalytic Oxygen Evolution Reaction
Part V. Advanced Functional Materials for Electrocatalytic CO2 Reduction Reaction
Chapter 14 Cu-Based Metal Materials for Electrocatalytic CO2 Reduction Reaction
Chapter 15 Non-Cu Metal-Based Materials for Electrocatalytic CO2 Reduction Reaction
Chapter 16 Carbon-based Materials for Electrocatalytic CO2 Reduction Reaction
Chapter 17 Porous materials for CO2 Reduction Reaction
Chapter 18 Cu-Based Compounds for Electrocatalytic CO2 Reduction Reaction
Part VI. Advanced Functional Materials for Electrocatalytic Nitrogen Reduction Reaction
Chapter 19 Metal-based Nanomaterials for Electrocatalytic Nitrogen Reduction Reaction
Chapter 20 Carbon-based Materials for Electrocatalytic N2 Reduction Reaction
Chapter 21 Porous materials for NRR
Part VII. Advanced Functional Materials for Electrocatalytic Liquid Fuel Oxidation
Chapter 22 Metal-based materials for Electrocatalytic Liquid Fuel Oxidation
Chapter 23 Non-noble Metal-based Materials for Electrocatalytic Liquid Fuel Oxidation
Chapter 24 Non-metal Materials for Electrocatalytic Liquid Fuel Oxidation
Part VIII. Advanced Functional Materials for Electrocatalytic Biomass Conversion
Chapter 25 Metal-based Materials for Electrocatalytic Biomass Conversion
Chapter 26 Porous Materials for Electrocatalytic Biomass Conversion
Chapter 27 Summary and Perspective
Zhang, Zhicheng
Zhao, Meiting
Qin, Yuchen
ISBN | 9783527353651 |
---|---|
Artikelnummer | 9783527353651 |
Medientyp | Buch |
Auflage | 1. Auflage |
Copyrightjahr | 2025 |
Verlag | Wiley-VCH |
Umfang | 592 Seiten |
Abbildungen | 100 SW-Abb., 50 Farbabb. |
Sprache | Englisch |