Hypervirial Theorems
Hypervirial Theorems
A
I. Hypervirial Theorems and Exact Solutions of the Schrödinger EquationII. Hypervirial Theorems and Perturbation Theory
III. Hypervirial Theorems and the Variational Theorem
IV. Non Diagonal Hypervirial Theorems and Approximate Functions
V. Hypervirial Functions and Self-Consistent Field Functions
VI. Perturbation Theory Without Wave Function
B
VII. Importance of the Different Boundary Conditions
VIII. Hypervirial Theorems for 1D Finite Systems. General Boundary Conditions
IX. Hypervirial Theorems for 1D Finite Systems. Dirichlet Boundary Conditions
X. Hypervirial Theorems for Finite 1D Systems. Von Neumann Boundary Conditions
XI. Hypervirial Theorems for Finite Multidimensional Systems
Special Topics
46. Hypervirial theorems and statistical quantum mechanics
47. Hypervirial theorems and semiclassica1 approximation
Numerical results
References
Appendix I. Evolution operators
Appendix II. Hamiltonian of an isolated N-particles system
Appendix III. Project ion operators
Appendix IV. Perturbation theory
Appendix V. Differentiation of matrices and determinants
Apendix VI. Dynamics of systems with time independent Hamiltonians
Appendix VII. Elements of probability theory for continuous random variables
Appendix VIII. Electrons in crystal lattices
Appendix IX. Numerical integration of the Schrödinger equation
Appendix X. Expansion in cthz series and polynomial power coefficients
Bibliography and References for Appendices
Program I
Program II
Program III
Program IV
Program V
Program VI
Program VII
Program VIII
Program IX
Program X
Program XI
Program XII
Program XIII
Program XIV
Program XV
Program XVI
Program XVII.
Fernandez, Francisco M.
Castro, Eduardo A.
ISBN | 978-3-540-17170-6 |
---|---|
Artikelnummer | 9783540171706 |
Medientyp | Buch |
Copyrightjahr | 1987 |
Verlag | Springer, Berlin |
Umfang | VIII, 373 Seiten |
Abbildungen | VIII, 373 p. |
Sprache | Englisch |