Managing Intermittent Demand
This work aims to increase the service level and to reduce the inventory costs by combining the forecast and inventory model into one consistent forecast-based inventory model. This new model is based on the prediction of the future probability distribution by assuming an integer-valued autoregressive process as demand process. The developed algorithms can be used to identify, estimate, and predict the demand as well as optimize the inventory decision of intermittent demand series. In an extensive simulation study the new model is compared with a wide range of conventional forecast/inventory model combinations. By using the consistent approach, the mean inventory level is lowered whereas the service level is increased. Additionally, a modern multi-criteria inventory classification scheme is presented to distinguish different demand series clusters.
Dr. Torben Engelmeyer works as a research assistant at the chair of International Economics - University of Wuppertal, Germany.
Dr. Torben Engelmeyer works as a research assistant at the chair of International Economics - University of Wuppertal, Germany.
Engelmeyer, Torben
ISBN | 9783658140625 |
---|---|
Artikelnummer | 9783658140625 |
Medientyp | E-Book - PDF |
Copyrightjahr | 2016 |
Verlag | Springer Gabler |
Umfang | 157 Seiten |
Sprache | Englisch |
Kopierschutz | Digitales Wasserzeichen |