Medical Image Reconstruction
A Conceptual Tutorial
"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included.
This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction.
Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.
This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction.
Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.
1;Title Page;2 2;Coppyright Page;3 3;Preface;5 4;Table of Contents;6 5;1 Basic Principles of Tomography;11 5.1;1.1 Tomography;11 5.2;1.2 Projection;13 5.3;1.3 Image Reconstruction;16 5.4;1.4 Backprojection;18 5.5;*1.5 Mathematical Expressions;20 5.5.1;1.5.1 Projection;20 5.5.2;1.5.2 Backprojection;21 5.5.3;1.5.3 The Dirac d-function;22 5.6;1.6 Worked Examples;24 5.7;1.7 Summary;27 5.8;Problems;28 5.9;References;29 6;2 Parallel-Beam Image Reconstruction;30 6.1;2.1 Fourier Transform;30 6.2;2.2 Central Slice Theorem;31 6.3;2.3 Reconstruction Algorithms;34 6.3.1;2.3.1 Method 1;34 6.3.2;2.3.2 Method 2;35 6.3.3;2.3.3 Method 3;36 6.3.4;2.3.4 Method 4;37 6.3.5;2.3.5 Method 5;37 6.4;2.4 A Computer Simulation;39 6.5;*2.5 ROI Reconstruction with Truncated Projections;40 6.6;*2.6 Mathematical Expressions;45 6.6.1;2.6.1 The Fourier Transform and Convolution;45 6.6.2;2.6.2 The Hilbert Transform and the Finite Hilbert Transform;45 6.6.3;2.6.3 Proof of the Central Slice Theorem;48 6.6.4;2.6.4 Derivation of the Filtered Backprojection Algorithm;49 6.6.5;2.6.5 Expression of the Convolution Backprojection Algorithm;50 6.6.6;2.6.6 Expression of the Radon Inversion Formula;50 6.6.7;2.6.7 Derivation of the Backprojection-then-Filtering Algorithm;50 6.7;2.7 Worked Examples;51 6.8;2.8 Summary;54 6.9;Problems;55 6.10;References;55 7;3 Fan-Beam Image Reconstruction;57 7.1;3.1 Fan-Beam Geometry and Point Spread Function;57 7.2;3.2 Parallel-Beam to Fan-Beam Algorithm Conversion;60 7.3;3.3 Short Scan;62 7.4;*3.4 Mathematical Expressions;64 7.4.1;3.4.1 Derivation of a Filtered Backprojection Fan-Beam Algorithm;65 7.4.2;3.4.2 A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform;66 7.5;3.5 Worked Examples;68 7.6;3.6 Summary;71 7.7;Problems;72 7.8;References;73 8;4 Transmission and Emission Tomography;75 8.1;4.1 X-Ray Computed Tomography;75 8.2;4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography;79 8.3;4.3 Attenuation Correction for Emission Tomography;83 8.4;*4.4 Mathematical Expressions;87 8.5;4.5 Worked Examples;89 8.6;4.6 Summary;91 8.7;Problems;91 8.8;References;92 9;5 3D Image Reconstruction;94 9.1;5.1 Parallel Line-Integral Data;94 9.1.1;5.1.1 Backprojection-then-Filtering;97 9.1.2;5.1.2 Filtered Backprojection;98 9.2;5.2 Parallel Plane-Integral Data;99 9.3;5.3 Cone-Beam Data;101 9.3.1;5.3.1 Feldkamp's Algorithm;102 9.3.2;5.3.2 Grangeat's Algorithm;103 9.3.3;5.3.3 Katsevich's Algorithm;104 9.4;*5.4 Mathematical Expressions;108 9.4.1;5.4.1 Backprojection-then-Filtering for Parallel Line-Integral Data;109 9.4.2;5.4.2 Filtered Backprojection Algorithm for Parallel Line-Integral Data;110 9.4.3;5.4.3 3D Radon Inversion Formula;111 9.4.4;5.4.4 3D Backprojection-then-Filtering Algorithm for Radon Data;111 9.4.5;5.4.5 Feldkamp's Algorithm;112 9.4.6;5.4.6 Tuy's Relationship;113 9.4.7;5.4.7 Grangeat's Relationship;115 9.4.8;5.4.8 Katsevich's Algorithm;118 9.5;5.5 Worked Examples;124 9.6;5.6 Summary;126 9.7;Problems;127 9.8;References;128 10;6 Iterative Reconstruction;131 10.1;6.1 Solving a System of Linear Equations;131 10.2;6.2 Algebraic Reconstruction Technique;136 10.3;6.3 Gradient Descent Algorithms;137 10.4;6.4 Maximum-Likelihood Expectation-Maximization Algorithms;140 10.5;6.5 Ordered-Subset Expectation-Maximization Algorithm;141 10.6;6.6 Noise Handling;142 10.6.1;6.6.1 Analytical Methods-Windowing;142 10.6.2;6.6.2 Iterative Methods-Stopping Early;143 10.6.3;6.6.3 Iterative Methods-Choosing Pixels;144 10.6.4;6.6.4 Iterative Methods-Accurate Modeling;146 10.7;6.7 Noise Modeling as a Likelihood Function;147 10.8;6.8 Including Prior Knowledge;149 10.9;*6.9 Mathematical Expressions;151 10.9.1;6.9.1 ART;151 10.9.2;6.9.2 Conjugate Gradient Algorithm;152 10.9.3;6.9.3 ML-EM;154 10.9.4;6.9.4 OS-EM;157 10.9.5;6.9.5 Green's One-Step Late Algorithm;157 10.9.6;6.9.6 Matched and Unmatched Projector/Backprojector Pairs;157 10.10;*6.10 Reconstruction Using Highly Undersampled Data with l 0 Minimization;159 10.11;6.11 Worked Examp
Zeng, Gengsheng Lawrence
ISBN | 9783642053689 |
---|---|
Artikelnummer | 9783642053689 |
Medientyp | E-Book - PDF |
Auflage | 2. Aufl. |
Copyrightjahr | 2010 |
Verlag | Springer-Verlag |
Umfang | 198 Seiten |
Sprache | Englisch |
Kopierschutz | Digitales Wasserzeichen |