Modelling Organs, Tissues, Cells and Devices

Using MATLAB and COMSOL Multiphysics

Modelling Organs, Tissues, Cells and Devices

Using MATLAB and COMSOL Multiphysics

234,33 €*

lieferbar, sofort per Download

Falls Sie eine Lieferung außerhalb DE, AT oder CH wünschen, nutzen Sie bitte unser Kontaktformular für eine Anfrage.

This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

1;Preface;7 2;Contents;9 3;Acronyms;13 4;Part I Bioengineering Modelling Principles, Methods and Theory;14 5;1 Introduction to Modelling in Bioengineering;15 5.1;1.1 Modelling and Simulation in Medicine and Biology;15 5.2;1.2 The Modelling Process;16 5.3;1.3 Mathematical Model Types;17 5.3.1;1.3.1 Linear Versus Non-linear;18 5.3.2;1.3.2 Dynamic Versus Static;19 5.3.3;1.3.3 Deterministic Versus Stochastic;19 5.3.4;1.3.4 Continuous Versus Discrete;21 5.3.5;1.3.5 Rule-Based;24 5.4;1.4 Dimensional Analysis;28 5.4.1;1.4.1 Dimensions and Units;28 5.4.2;1.4.2 Buckingham -Theorem;31 5.5;1.5 Model Scaling;33 5.6;References;39 6;2 Lumped Parameter Modelling with Ordinary Differential Equations;41 6.1;2.1 Overview of Ordinary Differential Equations;41 6.2;2.2 Linear ODEs;43 6.3;2.3 ODE Systems;47 6.3.1;2.3.1 Example Model 1: Cardiac Mechanics;49 6.3.2;2.3.2 Example Model 2: Hodgkin--Huxley Model of Neural Excitation;54 6.4;2.4 Further Reading;58 6.5;References;65 7;3 Numerical Integration of Ordinary Differential Equations;66 7.1;3.1 Taylor's Theorem;66 7.2;3.2 One-Step Methods;71 7.2.1;3.2.1 Backward-Euler Method;74 7.2.2;3.2.2 Trapezoidal Method;76 7.2.3;3.2.3 Runge--Kutta Methods;77 7.2.4;3.2.4 The Generalized-? Method;84 7.3;3.3 Multistep Methods;93 7.3.1;3.3.1 Predictor-Corrector Methods;97 7.3.2;3.3.2 Backward Differentiation Formulas;104 7.3.3;3.3.3 Numerical Differentiation Formulas;107 7.4;3.4 ODE Solver Implementations in Matlab and COMSOL;108 7.5;3.5 Further Reading;111 7.6;References;114 8;4 Distributed Systems Modelling with Partial Differential Equations;116 8.1;4.1 Modelling with PDEs;116 8.1.1;4.1.1 The Gradient;116 8.1.2;4.1.2 The Divergence;119 8.1.3;4.1.3 The Curl;123 8.1.4;4.1.4 The Divergence Theorem;124 8.1.5;4.1.5 Conservation Law Formulation;128 8.1.6;4.1.6 The Laplacian;130 8.1.7;4.1.7 PDE Boundary Conditions;131 8.2;4.2 Basic Analytical and Numerical Solution Techniques;134 8.2.1;4.2.1 Separation of Variables;134 8.2.2;4.2.2 Finite Difference Method;150 8.2.3;4.2.3 Method of Lines;158 8.3;4.3 Further Reading;164 8.4;References;168 9;5 The Finite Element Method;169 9.1;5.1 Finite Elements for 1D Systems;169 9.1.1;5.1.1 Weak Form PDE Equivalent;170 9.1.2;5.1.2 Basis Function Approximation;174 9.1.3;5.1.3 Higher-Order Basis Functions;185 9.2;5.2 Finite Elements for 2D/3D Systems;189 9.2.1;5.2.1 Weak Form Description;190 9.2.2;5.2.2 Basis Function Approximation;193 9.3;5.3 FEM Numerical Implementation;200 9.3.1;5.3.1 Assembly of System Matrices;201 9.3.2;5.3.2 Gaussian Quadrature;202 9.3.3;5.3.3 Non-Linear Systems;204 9.4;5.4 Further Reading;205 9.5;References;207 10;Part II Bioengineering Applications;208 11;6 Modelling Electrical Stimulation of Tissue;209 11.1;6.1 Electrical Stimulation;209 11.1.1;6.1.1 Maxwell's Equations;209 11.1.2;6.1.2 Electrostatic Formulations;211 11.1.3;6.1.3 Volume Conductor Theory;212 11.1.4;6.1.4 Example: Cell Culture Electric Field Stimulator;215 11.1.5;6.1.5 Example: Access Resistance of Electrode Disc;218 11.2;6.2 Modelling Electrical Activity of Tissues;223 11.2.1;6.2.1 Continuum Models of Excitable Tissues;223 11.2.2;6.2.2 Example: Modelling Spiral-Wave Reentry in Cardiac Tissue;225 11.2.3;6.2.3 Modelling PDEs/ODEs on Boundaries, Edges and Points;233 11.2.4;6.2.4 Example: Axonal Stimulation Using Nerve Cuff Electrodes;234 11.3;6.3 Further Reading;242 11.4;References;243 12;7 Models of Diffusion and Heat Transfer;244 12.1;7.1 Diffusion;244 12.1.1;7.1.1 Fick's Laws of Diffusion;244 12.1.2;7.1.2 Example: Diffusion and Uptake into a Spherical Cell;245 12.1.3;7.1.3 Convective Transport;248 12.1.4;7.1.4 Example: Drug Delivery in a Coronary Stent;249 12.2;7.2 Heat Transfer;254 12.2.1;7.2.1 Heat Conduction and Convection;255 12.2.2;7.2.2 The Bioheat Equation;257 12.2.3;7.2.3 Example: RF Atrial Ablation;258 12.3;7.3 Further Reading;265 12.4;References;267 13;8 Solid Mechanics;269 13.1;8.1 Biomechanics;269 13.2;8.2 Tensor Fundamentals;269 13.2.1;8.2.1 Tensor Definition;269 13.2.2;8.2.2 Ind
ISBN 9783642548017
Artikelnummer 9783642548017
Medientyp E-Book - PDF
Copyrightjahr 2017
Verlag Springer-Verlag
Umfang 504 Seiten
Sprache Englisch
Kopierschutz Digitales Wasserzeichen