Option Pricing in Fractional Brownian Markets
The scientific debate of recent years about option pricing with respect to fractional Brownian motion was focused on the feasibility of the no arbitrage pricing approach. As the unrestricted fractional market setting allows for arbitrage, the conventional reasoning is that fractional Brownian motion does not qualify for modeling price process.
1;Foreword;6 2;Acknowledgements;7 3;Contents;8 4;Acronyms;10 5;Chapter 1 Introduction;12 6;Chapter 2 Fractional Integration Calculus;16 6.1;2.1 The Stochastic Process of Fractional Brownian Motion;18 6.2;2.2 Serial Correlation: The Role of the Hurst Parameter;24 6.3;2.3 The Wick-Based Approach to Fractional Integration;28 6.4;2.4 Pathwise and Stratonovich Integrals;33 6.5;2.5 Some Important Results of the Wick Type Fractional Integration Calculus;36 6.6;2.6 The S-Transform Approach;39 7;Chapter 3 Fractional Binomial Trees;43 7.1;3.1 Binomial Approximation of an Arithmetic Fractional Brownian Motion Process;44 7.2;3.2 Binomial Approximation of the Conditional Moments of Fractional Brownian Motion;50 7.3;3.3 Binomial Approximation of a Geometric Fractional Price Process;54 7.4;3.4 Arbitrage in the Fractional Binomial Market Setting and Its Exclusion;59 8;Chapter 4 Characteristics of the Fractional Brownian Market: Arbitrage and Its Exclusion;66 8.1;4.1 Arbitrage in the Unrestricted Continuous Time Setting;67 8.2;4.2 Diverse Approaches to Exclude Arbitrage;71 8.3;4.3 On the Non-compatibility of Fractional Brownian Motion and Continuous Tradability;78 8.4;4.4 Renouncement of Continuous Tradability, Exclusion of Arbitrage and Transition to Preference-Based Pricing;86 9;Chapter 5 Risk Preference-Based Option Pricing in a Continuous Time Fractional Brownian Market;88 9.1;5.1 Motivation and Setup of the Model;88 9.2;5.2 The Conditional Distribution of Fractional Brownian Motion 5.2.1 Prediction Based on an Infinite Knowledge About the Past;90 9.3;5.3 A Conditional Fractional It_o Theorem;98 9.4;5.4 Fractional European Option Prices;101 9.5;5.5 The Influence of the Hurst Parameter;108 9.6;5.6 The Influence of Maturity and the Term Structure of Volatility;115 10;Chapter 6 Risk Preference-Based Option Pricing in the Fractional Binomial Setting;120 10.1;6.1 The Two-Time Total Equilibrium Approach;122 10.2;6.2 The Two-Time Relative Equilibrium Approach;125 10.3;6.3 Multi-Time Equilibrium Approaches;130 10.4;6.4 Deeper Insights Provided by Discretization: The Continuous Time Case Reconsidered;137 11;Chapter 7 Conclusion;140 12;References;144
Rostek, Stefan
ISBN | 9783642003318 |
---|---|
Artikelnummer | 9783642003318 |
Medientyp | E-Book - PDF |
Auflage | 2. Aufl. |
Copyrightjahr | 2009 |
Verlag | Springer-Verlag |
Umfang | 137 Seiten |
Sprache | Englisch |
Kopierschutz | Digitales Wasserzeichen |