Sponges (Porifera)

Sponges (Porifera)

53,49 €*

lieferbar in ca. 2-4 Werktagen

Falls Sie eine Lieferung außerhalb DE, AT oder CH wünschen, nutzen Sie bitte unser Kontaktformular für eine Anfrage.

Sponges (phylum Porifera) are known to be very rich sources for bioactive compounds, mainly secondary metabolites. Main efforts are devoted to cell- and mariculture of sponges to assure a sustainable exploitation of bioactive compounds from biological starting material. These activities are flanked by improved technologies to cultivate bacteria and fungi which are associated with the sponges. It is the hope that by elucidating the strategies of interaction between microorganisms and their host (sponge), by modern cell and molecular biological methods, a more comprehensive cultivation of the symbiotic organisms will be possible. The next step in the transfer of knowledge to biotechnological applications is the isolation, characterization and structural determination of the bioactive compounds by sophisticated chemical approaches.



Analysis of the Sponge [Porifera] Gene Repertoire: Implications for the Evolution of the Metazoan Body Plan
1 Introduction
2 Sponges
3 Adhesion Between Cells
4 Growth and Differentiation
5 Migration of Cells - Contraction in Cell Layers
6 Elements of a Neuronal Network
7 Secretion of Skeletal Elements
8 Morphogens
9 Apoptosis
10 Conclusion: Contribution to the Origin of the Metazoan Body Plan
References
Sponge-Associated Bacteria: General Overview and Special Aspects of Bacteria Associated with Halichondria panicea
1 Introduction
2 General Considerations
3 Bacteria Associated with Halichondria panicea
4 Conclusions
References
Microbial Diversity of Marine Sponges
1 Introduction
2 Sponge-Microbe Associations
3 Tools of Molecular Microbial Ecology
4 A Uniform Microbial Community in Sponges from Different Oceans
5 Biotechnological Potential of Sponge-Associated Microorganisms
6 Conclusions and Future Directions
References
Full Absolute Stereo structures of Natural Products Directly from Crude Extracts: the HPLC-MS/MS-NMR-CD 'Triad'
1 Introduction
2 Exemplarily for Naphthylisoquinoline Alkaloids: Constitutions and Relative Configurations by LC-MS/MS-NMR
3 Complemented by the LC-CD Option for the Online Assignment of Absolute Configurations: the Triad Is Complete!
4 Application of the Triad to the Online Structural Elucidation of New Naphthylisoquinoline Alkaloids and Related Compounds
5 An Application to Natural Phenylanthraquinones - Including Quantum Chemical CD Calculations and Total Synthesis
6 Stereochemistry of Axially Chiral Biscarbazoles in Plant Extracts, by LC-CD Coupling and CD Calculations
7 Without (True) Stereogenic Axes or Centers, but Chiral: a Bis-Bibenzyl Macrocycle
8 First Timein Marine Natural Products Analysis: the Analytical Triad HPLC-MS/MS-NMR-CD
9 Conclusions
References
Bioactive Natural Products from Marine Invertebrates and Associated Fungi
1 Introduction: Some Current Issues of Marine Natural Products Research
2 Ecological Functions of Sponge Alkaloids
3 Pharmacologically Active Constituents from Marine Invertebrates
4 Sponge-Associated Fungi as a New Source for Bioactive Metabolites
5 Conclusions
References
Sustainable Use of Marine Resources: Cultivation of Sponges
1 Introduction
2 In Situ Cultivation of Bath Sponges
3 Sponge Farming
4 Ex Situ Maintenance of Sponges in Aquaria
5 In Vitro Cultivation of Sponges
6 Conclusions and Future Directions
References
Sustainable Production of Bioactive Compounds from Sponges: Primmorphs as Bioreactors
1 Introduction
2 Origin of Biologically Active Compounds from Sponges
3 Biologically Active Compounds from S. domuncula
4 The Primmorph System
5 Production of Bioactive Compounds in the Primmorph System
6 Future Directions
7 Conclusions
References
Approaches for a Sustainable Use of the Bioactive Potential in Sponges: Analysis of Gene Clusters, Differential Display of mRNA and DNA Chips
1 Introduction
2 Genome of Porifera
3 Nonrandom Distribution of Dinucleotide Repeats
4 Burst of Gene Duplication
5 Approaches to Identify Genes Involved in the Synthesis of Bioactive Compounds
6 Conclusions
References
Sorbicillactone A: a Structurally Unprecedented Bioactive Novel-Type Alkaloid from a Sponge-Derived Fungus
1 Introduction
2 Isolation and Cultivation of the Fungus
3 Online Analysis of the Extract by the Triad LC-MS/MS-NMR-CD: Hints at a Novel Structural Type
4 Isolation of the New Compound and Completion of the Structural Elucidation
5 Sorbicillactone A: a Unique, Novel-Type Structure and Its Presumable Biosynthetic Origin
6 Sorbicillactone A: a Natural Product with Strong - and Selective - Bioactivities
7 Summary and Future Perspectives
References.
ISBN 978-3-642-62471-1
Artikelnummer 9783642624711
Medientyp Buch
Auflage Softcover reprint of the original 1st ed. 2003
Copyrightjahr 2012
Verlag Springer, Berlin
Umfang XVIII, 258 Seiten
Abbildungen XVIII, 258 p.
Sprache Englisch